
656 C O R R E C T I O N  FOR PRIMARY AND SECONDARY EXTINCTION.  II 

It is my pleasure to extend belated thanks to J. J. 
DeMarco for collaboration and discussions during the 
preliminary studies on Be at Army Materials and 
Mechanics Research Center in 1970-71, and I am 
grateful to N. K. Hansen for communicating the latest 
results. 

References 

BENESCH, R. & SMITH, V. H. JR (1970). Acta Cryst. A26, 
586-594. 

BROWN, P. J. (1972). Philos. Mag. 26, 1377-1394. 
CHIPMAN, D. R. (1969). Acta Cryst. A25, 209-214. 
COLE, H., CHAMBERS, F. W. & WOOD, C. G. (1961). J. 

Appl. Phys. 32, 1942-1945. 
DEMARCO, J. J., DIANA, M. & MAZZONE, G. (1967). Philos. 

Mag. 16, 1303-1306. 
DOVESI, R., PISANI, C., RlCCA, F. & ROETTI, C. (1981). To 

be published. 
DOVESI, R., PISANI, C., RICCA, F. & RoEan-l, C. (1982). To 

be published. 
HUSTACHE, R. (1979). Nucl. Instrum. Methods, 163, 

151-156. 
INOUE, S. T. & YAMASHITA, J. (1973). J. Phys. Soc. Jpn, 35, 

677-683. 
KURITrU, J. & MERISALO, M. (1977). Rep. Ser. Phys. No. 

132. Univ. of Helsinki, Finland. 

LARSEN, F. K., BROWN, P. J., LEHMANN, M. S. & MERISALO, 
M. (1982). Philos. Mag. B45, 31-50. 

LARSEN, F. K., HANSEN, N. K. & SCHNEIDER, J. R. (1981). 
Unpublished. 

LARSEN, F. K., LEHMANN, M. S. & MERISALO, M. (1980). 
Acta Cryst. A36, 159-163. 

LOUPIAS, G., PETIAU, J., ISSOLAH, A. & SCHNEIDER, M. 
(1980). Phys. Status Solidi B, 102, 79-95. 

MANNINEN, S. & SuoRa-rI, P. (1979). Philos. Mag. B40, 
199-207. 

MA'rrHAI, C. C., GROOT, P. J. & MARCH, N. H. (1980). J. 
Phys. F, 10, 1621-1626. 

MERISALO, M. & KURITTU, J. (1978). J. Appl. Cryst. 11, 
179-183. 

OLEKHNOVlCH, N. M., MARKOVlCH, V. L. & OLEKHNOVlCH, 
A. I. (1980). Acta Cryst. A36, 989-996. 

OLEKHNOVICH, N. M. & OLEKHNOVICH, A. I. (1978). Acta 
Cryst. A34, 321-326. 

OLEKHNOVICH, N. M. • OLEKHNOVICH, A. I. (1980). Acta 
Cryst. A36, 22-27. 

STEDMAN, R., AMILIOS, Z., PAOLI, R. & SONDIN, O. (1976). 
J. Phys. F, 6, 157-166. 

STEWART, R. F. (1977). Acta Cryst. A33, 33-38. 
SOORTrI, P. (1982). Acta Cryst. A38, 642-647. 
SUOR'rl'I, P. & JENNINGS, L. D. (1977). Acta Cryst. A33, 

1012-1027. 
YANG, Y. W. & COPPENS, P. (1978). Acta Cryst. A34, 

61-65. 
ZACHARIASEN, W. H. (1967). Acta Cryst. 23, 558-564. 

Acta Cryst. (1982). A38, 656-663 

Relaxation of Mackay Icosahedra 

BY J. FARGES, M. F. DE FERAUDY, B. RAOULT AND G. TORCHET 

Laboratoire de Physique des Solides, Universitd de Paris Sud, Bdtt'ment 510, 91405 Orsay, France 

(Received 19 January 1981; accepted 29 March 1982) 

Abstract 

Multilayer icosahedra, first introduced about twenty 
years ago by Mackay [Acta Cryst. (1962), 15, 
916-918], are no longer considered a geometrical 
curiosity, as small icosahedral particles have been 
observed in a great number of experiments. The 
hard-sphere models, previously considered, are not 
really suited to the study of physical properties because 
they fail to express the important stresses due to the 
icosahedral structure. Therefore, Mackay icosahedra, 
made of atoms interacting through a Lennard-Jones 
potential, were constructed and allowed to relax freely. 
Results of the calculation are given, consisting of a 
detailed description of relaxed icosahedra with up to 
nine layers, i.e. with up to almost 3000 atoms. 

0567-7394/82/050656-08501.00 

I. Introduetlon 

Mackay (1962) noted that a cuboctahedron formed of 
rigid rods can be transformed into an icosahedron, it 
being sufficient for this that one of the diagonals of each 
square face be contracted to the length of the edge of a 
primitive cuboctahedron, while at the same time the 
face is folded following the same diagonal so as to form 
two equilateral faces (Fig. 1). This transformation to an 
icosahedron is very simple to visualize for a cuboc- 
tahedron of 13 atoms containing a single layer of atoms 
surrounding a central one, and for the cuboctahedron of 
5 5 atoms, which contains an additional layer of atoms, 
it is sufficient that two layers are deformed at the same 
time, each square (100)face being transformed into two 
equilateral (111) faces. Thus to each cuboctahedron 
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there corresponds an icosahedron presenting, on the 
one hand, the same number of layers and, on the other, 
in a layer of index n, the same number of atoms in the 
layer (10n + 2) and on the corresponding edge (n + 1). 
It is remarkable that the former packing is crystallo- 
graphic while the latter, having fivefold symmetry, is 
not. 

Mackay described the icosahedron as made up of 20 
identical tetrahedra possessing a common vertex and 
connected with each other through adjacent faces, each 
of which forms twinning planes, the icosahedron and 
the tetrahedra from which it is composed possessing the 
same number o f  atoms on each edge. To a first 
approximation the tetrahedra represent a cubic close- 
packed structure having thus four (111)faces; in reality 
however this structure is slightly deformed, because the 
tetrahedra are not absolutely regular. In fact the three 
radial edges derived from the common vertex are equal, 
just as the three surface edges are, but the latter are 
longer than the former by approximately 5%. At the 
same time the three faces of the tetrahedra within the 
icosahedron are not precisely equilateral, the angle at 
the center being slightly enlarged and taking a value of 
63o26 '. 

Mackay calculated the effective density for the case 
of an icosahedron of hard spheres. The radial inter- 
atomic distances are thus put equal to the diameter of 
the spheres while the lateral distances are somewhat 
larger. Because of this, he found an effective density 
somewhat less than that of the face-centered cubic 
structure (0.69 as against 0.74). It therefore appeared 
to him 'somewhat unlikely that a large number of atoms 
would naturally adopt a multilayer icosahedral arrange- 
ment', all the less probable it would seem in view of the 
simplicity of the mechanism of transition to the 
face-centered cubic structure which he had clearly 
demonstrated. 

These studies of models with pentagonal symmetry 
remained almost unnoticed until in 1966 (Ino, 1966; 
Gillet & Gillet, 1966; Allpress & Sanders, 1967) the 
discovery by electron microscopy of icosahedral par- 
ticles in thin gold films caused a revival of interest. 
Numerous experimental confirmations have appeared 
subsequently in which the existence of such particles is 
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Fig. I. Transformation of (a) a cuboctahedron into (b) an 
icosahedron. 

attributed either to more favorable kinetic paths of 
growth (Gillet & Gillet, 1972) or to a greater 
thermodynamic stability (Farges, de Feraudy, Raoult 
& Torchet, 1977). 

At the same time one knows that the configuration of 
a hard-sphere model can at most only approximately 
represent that of an isolated aggregate. On applying a 
more realistic potential between the atoms of such a 
model, for example the Lennard-Jones potential, and 
allowing it to relax under the forces thus introduced, the 
atoms are found to be displaced from their respective 
sites towards equilibrium positions which vary accord- 
ing to the site in question. If one considers a 
microcrystalline model such as that based on the 
cuboctahedron, then the relaxation affects mainly the 
surface and its effect on internal interatomic distances 
in the model is found to be relatively weak and to be 
localized sufficiently that one may justify the use of a 
hard-sphere model for, at least, an approximate 
description of the corresponding crystalline aggregate. 
By contrast, if one considers an icosahedral model, its 
geometry imposes forces sufficiently strong that their 
effect in its whole structure becomes appreciably more 
important than that due to its surface. 

The aim of the present paper is not to discuss the 
stability of the icosahedral models but to show the 
importance of the geometrical effects to which they are 
subject after relaxation. This we shall demonstrate 
qualitatively in § II with the help of a macroscopic 
model, which will also bring out the necessity of using 
relaxed icosahedral configurations in the study of the 
properties of such aggregates. In §III,  we elucidate the 
calculation method which we use to allow free 
relaxation of icosahedral configurations. In § IV, a 
precise description of the relaxed configurations of 
icosahedral structures of from one to nine layers (i.e. of 
up to almost 3000 atoms) is given. 

II. Macroscopic approach 

1. Stresses in a continuous icosahedron 

Let the icosahedron be considered as a solid 
composed of 20 adjacent irregular tetrahedra, the 
tangential edges of which are some 5% longer than the 
radial ones. Let us further imagine each tetrahedron to 
be sectioned into prismatic elements of height h, with 
equilateral bases parallel to the surface. 

Consider now the two such elements belonging to 
two adjacent tetrahedra - having one lateral face in 
common (Fig. 2). The extension of the tangential edges 
ensures that each section exerts on this face a tensile 
stress s~, perpendicular to the common tangential edge 
and parallel to their respective bases. The resultant S~ 
of these two equal stresses lies in the common lateral 
face and is perpendicular to the common edge. The 
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external section of any one of the 20 tetrahedra is thus 
subject to a stress/ '1 which is the resultant of the three 
stresses S 1 operating on its three lateral faces. This 
stress T~, uniformly distributed, is perpendicular to the 
base of the rigid section. Furthermore, the stress T~ is 
transmitted to the whole tetrahedron and consequently 
contributes by compression to the 5% extension of the 
following section, this second section exerting on its 
lateral faces a tensile stress s 2, somewhat weaker than 
sx. The stress T 2 which thereby results is thus added to 
the stress Tp in such a way that the second element is 
subject to the total stress T = 7"1 + T 2. 

In fact, since they are transmitted to decreasing base 
surfaces, stresses like T grow, while at the same time 
the additional stress T n produced by each successive 
element depends on the extension provoked by the 
stress T due to the elements which it supports. If, 
beyond a certain depth, T is such that it alone would 
cause an extension greater than 5%, the lateral faces 
become subject to compressive stresses s reducing T in 
order to maintain the ieosahedral geometry. Never- 
theless T continues to grow indefinitely as one 
approaches the center of the icosahedron, because it 
acts upon elements whose surfaces tend to zero. 
Consequently, the increase in density of the elements, 
supposedly of the same height h, may itself become 
more and more important, as one goes from the surface 
towards the center of the icosahedron. 

2. Form of  the sections (Fig. 3) 

It has been implicitly admitted in § 1 that the 
prismatic sections have an infinite rigidity and thus keep 
fiat bases after relaxation. In fact, their rigidity being 
finite, the sections take up a certain convexity. On the 
other hand it is clear that the stresses are appreciably 
stronger in the region of the radial edges where five 
lateral faces coincide than in the center of the lateral 
faces. The tangential edges of each section conse- 
quently have a convexity which accentuates that of the 
sections themselves. 

III. Method of  relaxation 

Let us consider an icosahedron composed of N atoms 
and seek the configuration for which the total potential 
energy of interaction is a minimum when the pair 
potential between two atoms i and j a distance r U apart 
is given by the Lennard-Jones potential: V U = 4 ( r ~  12 - -  
r~)6). 

To this end we allow the icosahedron to relax freely, 
each of its atoms being displaced under the action of the 
forces of each of its neighbors, to the point where the 
resultant of all such forces vanishes. Since the relaxa- 
tion is static, and the initial configuration is compact, 
the structure remains icosahedral throughout the whole 
calculation. It is thus possible by taking account of the 
symmetry of this structure to reduce considerably the 
time of the calculation. 
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Fig. 2. Stresses exerted on the external section of one of the 20 
tetrahedra forming a continuous icosahedron. S 1 is the resultant 
of the two tensile stresses s 1 exerted by adjacent sections on their 
lateral common face. TI is the resultant of the three equivalent 
stresses Sp 

I 
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Fig. 3. Schematic form of the sections inside a tetrahedron, as a 
result of the stresses presented in Fig. 2. The convexity of a few 
sections has been suggested - and exaggerated for clearer 
presentation. 
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The calculation proceeds somewhat as follows. 
(a) The initial configuration is taken to be a 

geometrically perfect icosahedron: its tangential dis- 
tances between neighbors are equal and some 5% 
longer than their radial counterparts. 

(b) The force F/ exerted upon each atom i is 
calculated in magnitude and direction. 

(c) We seek and find a new configuration in which 
the forces F/are  lessened and the potential energy of the 
whole icosahedron is lower. 

(d) We repeat the procedure displacing all atoms 
according to the new values of forces F/ obtained in 
step c, and so on. In this way all the forces present in 
the icosahedron are progressively relaxed. 

For each configuration the mean potential energy per 
atom is calculated according to 

1 

N 
i j > i  

the mean force per atom according to 

p = l  - YI,F, II 

and the standard deviation of this force cr r = (F  2 - 
p2)1/2 according to 

_ 1 
F 2 = - - ~ - ~ ,  I I F t l l  2. 

N 
t 

At the beginning of the relaxation calculation, the 
icosahedron would be far from its equilibrium configu- 
ration, the relative standard deviation trF/F being quite 
large, of the order of one. In order to reduce the latter, 
we displaced the atoms proportionally to the square of 
the absolute value of the force exerted on them. In this 
way, it is possible to move those atoms more rapidly 
which are far from the equilibrium position, without the 
risk of displacing the ones which are relatively close. As 
soon as aF/F becomes less than 15 or 20%, the 
displacement dr i of atom i is taken to be proportional to 
the force F/, dri = kF r 

The relaxation is held to be proceeding correctly if, 
from one configuration to the next, the three magni- 
tudes U, F and a F simultaneously reduce in a 
monotonic fashion. Tests of F and tr r allow us to 
control the progress of the relaxation and if necessary 
modify its rate, raising or lowering the value of k 
throughout the calculation. For example, an increase of 
try from one configuration to the next is an indication 
that the model has begun to deviate locally from 
equilibrium because k is too large. 

Since the range of the potential extends over all 
relevant distances in the icosahedron, as the force on a 
particular atom diminishes, so the effect of its distant 
neighbors becomes correspondingly important. For 
example, it is impossible to relax freely an icosahedron 
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of more than three layers if one limits the range of the 
interaction potential to some three atomic diameters. 

The question then arises as to how the calculation 
should be terminated. To this end, we observed the 
evolution of the various distance parameters with 
decrease in the forces F. (Note by way of example the 
curve in Fig. 4, which shows how the radial distances of 
nearest neighbors, dj at the center and d 9 at the surface 
of a nine-layer icosahedron, vary linearly with F, as one 
would expect in the neighborhood of an energy 
minimum.) Instead of keeping the extrapolated values 
for F equal to zero for all distances present in the 
aggregate, we saved only those values obtained when P 
had reduced to s o m e  10 -14 N. Fig. 4 shows that if one 
takes for d l, which is somewhat sensitive to F, the value 
obtained for /~" equal to 2 x 10 -14 N instead of the 
extrapolated value, the resulting error is less than one 
part in 10 -4 . 

With a relaxation program using the symmetry of the 
icosahedron, the time necessary for calculation was 
some two hours on the UNIVAC 1110 for relaxation of 
an icosahedron of nine layers (N = 2869). 

I V .  R e s u l t s  

1. Form of the faces 
The coordinates of the atoms and the interatomic 

distances are given in reduced units (1 r.u. = 3.405 A). 

l I ! I I I I I 

d9 

1-119 

~- 1.118 
.-1 

1.005 

.~_ 

~ 1.004 

1.003 

1-002 

I I i i i i I I 

0 10 30 50 7o 

mean force per atom F(10 -~4 N) 

Fig. 4. Interatomic distances v s  mean force per atom ~" during the 
relaxation process. Complete relaxation corresponds to F = 0. d~ 
and d 9 are radial distances between nearest-neighbor atoms, at 
the center and at the surface respectively of the nine-layer 
icosahedron (N = 2869). 1 r.u. = 3.405 ,/L 
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The diagram in Fig. 5 shows the convex form of one of 
the twenty (111) faces at the surface of the six-layer 
icosahedron (N = 923). The coordinates of atoms 
situated on an edge and on two perpendicular rows are 
reported in Fig. 6. The z axis originates from the atom 
situated at the centre O of the icosahedron, being 
normal to the given face, passes through the center of 
gravity of that face. The difference 6z between the level 
at the center and that at a vertex is equal to 0.08, this 
representing some 9% of the mean distance separating 
the surface layer for n = 6 from the immediately 
preceding layer n = 5. 

In agreement with the form of this face the minimal 
interatomic distances (d = 1.1115 r.u.) are those which 
separate a vertex atom from its nearest neighbors, the 
maximal distances occurring at the center of the face 
(d = 1.125 r.u.). 

Z ]2 

562 

563 

Fig.  5. S c h e m a t i c  view o f  one  o f  the 20 faces  at  the sur face  o f  the 
s ix- layer  i c o s a h e d r o n  ( N  = 923). N u m b e r s  refer  to a t o m  labeling 
in the re laxa t ion  calcula t ion.  T h e  z axis or ig inates  f rom the 
i c o s a h e d r o n  center  and  pas ses  t h r o u g h  the center  o f  g rav i ty  o f  
t ha t  face  ( a t o m  labeled 728). T h e  convex i ty  has  been  exag-  
gerated.  

5.15 

" - ' 5 . 1 0  N 

5-05 

728 
÷ 

,'7 X\ 
/ / .~........--~(~ ~ ÷_ 60 l'÷~k+~ o .  

562 563 564 

14 13 t I I t , t 
- - - 2  - 1  0 1 2 3 

x,y (r.u.) 

Fig. 6. Coordinates of several atoms Situated on the face presented 
in Fig. 5. Two rows are parallel to the y axis (--), one to the x 
axis (---) .  

We should now examine the manner in which the 
atoms of a given layer approach the center O as the 
number of layers in the model increases. Let us consider 
a face belonging to the layer n = 3. In Fig. 7, we have 
given the coordinate of several atoms belonging to this 
face, four atoms from an edge and the three atoms of 
the parallel row, in the various models studied. In the 
three-layer model (N = 147) these atoms are on the 
surface. One notices that as layers are added the face 
and thus the whole layer tends to approach the center. 
In Table 1 we have collected results concerning two of 
the atoms of the layer n = 3 as extracted from Fig. 7: 
on the one hand the decrease dz/z of the level of atoms 
situated at the center of the face and at the vertex, when 
one adds successively one, two, three and then six 
layers, and on the other hand the difference 6z between 
these levels in the different models. 

We see that the addition of the first layers causes a 
stronger decrease in dz/z than the addition of those 
following. This shows the effect of the positive 

Table 1. Compression of central and vertex atom in 
the n = 3 layer according to the number of supported 

layers 

Total number of layers 3 4 5 6 9 
Number of supported layers 0 1 2 3 6 

dz 
100 x - -  (center of face) - -  -1.17 -0-75 -0.55 -1-16 

L 
100 x - -  (vertex) - -  --1.51 --0.82 --0.58 - I .  18 

z 

& = Zce.ter -- Zve~e x 0.0375 0.045 0"048 0"048 0-048 

••_\ _ A _  N = 147 
- - " - -  N = 309 

= y --o---- N = 561 
! \ - -+--  N = 923 

O ~ e ~ Q  --x--  N = 2869 

o o 

2.50 o v  / -  ~ .<..._~ ~,,, 

2.45 x / / ~ ~  " ~ x  

' I I I I I I 

- 1 . 5  - 1  - 0 . 5  0 0.5 I I-5 

y (r.u.) 

Fig.  7. C o o r d i n a t e s  o f  seven a t o m s  s i tuated on  a face  be longing  to 
the l aye r  n = 3, as the n u m b e r  o f  s u p p o r t e d  l aye r s  is increased.  
Both  rows  are  paral le l  to the  y axis. 

u~ 

2 ~= 

3~ 
E 
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Table 2. Distances between the vertices o f  layers n - 1 and n in the nine-layer ieosahedron 

Layers n - n  - 1 1-0 2-1 3-2 4-3 5-4 6-5 7-6 8-7 9-8 
d. (r.u.) 1.0023 1.0232 1.0395 1.0513 1.0605 1.0684 1.0768 1.0885 1.1185 

d,-d,_~ 
100 x - -  2.1 1.6 1.1 0.9 0.8 0.8 1.1 2.8 

dn_l 

relaxation as it affects atoms when they belong to the 
surface layer, or, to a lesser extent, to the immediate 
subsurface layer. In both cases one notices that the level 
of the atom at a vertex experiences a more pronounced 
decrease than that of the atom at the center. Thus it 
comes about that the spread 0z between these levels 
grows as one adds the two first layers and remains 
constant as the successive layers are added. One can 
therefore say that a face belonging to a layer of given 
index conserves the same convexity in all icosahedral 
models, once it is covered with three or more layers. 

Let us now examine the variation of the difference in 
level & in the different layers of the same icosahedron. 
Fig. 8 illustrates the case of icosahedra of six and nine 
layers. In the layers of index n where there is no atom at 
the center of the face (n 4: 3, 6, 9), we have taken the 
level of the nearest atom to the center, which leads to an 
under-evaluation of Oz. It is clear that 0z grows linearly 
with n in the deeper layers of the icosahedra, a fact 
which demonstrates that the layers encase each other 
regularly. 

Finally, we may remark that in accordance with the 
results described in the previous paragraph, the positive 
relaxation of the surface, affecting the vertices rela- 
tively more than the centers of faces, tends to diminish 

t ~ Z  

(r.u.) 

0.10 

0.05 

0.01 

! i i i | i | ! | 

~ N  = 2869 

/ 
/ 

/ 

923 

I I I i | | l i i 

1 2 3 4 5 6 7 8 9 

layer index n 

Fig. 8. Difference 6z between the level of atoms situated at the 
center of a face and at a vertex v s  layer index n. Results are given 
for the six-layer (N = 923) and the nine-layer (N = 2869) 
icosahedra. 

0z, and that the 0z values corresponding to internal 
layers n = 3 and n = 4 are identical in the two 
icosahedra. 

2. Rad ia l  distances 

In each of the relaxed models, we calculated the 
distances between nearest-neighbor atoms on the 
fivefold symmetry axis, i.e. between the vertices of 
successive layers. 

Table 2 gives the distances d, between the vertices of 
layers n - 1 and n, as well as the relative growth 
increments (d n - d , _ l ) / d , _ l ,  in the case of the 
icosahedron of nine layers, N = 2869. 

The decrease of dn confirms that the effective atomic 
density grows as one approaches the center of the 
model. The relative growth varies as one moves along a 
radial axis. It increases in the passage through layers 
n = 7 and n = 8, which reflects the positive relaxation 
of the vertex atoms situated on layer n = 8 and on the 
surface layer n -- 9. Above all, we notice that the relative 
growth increases as one moves away from the surface. 
Thus the effective atomic density grows more and more 
rapidly as one approaches the center of the model. 

This radial compression is to be seen in all the 
models as is evident in Fig. 9, which gives the distances 
d~ in the various icosahedra. As abscissa, we have 
drawn the quantity N -~/3 which varies inversely as the 
mean diameter of the models, i.e. as the surface/volume 
ratio. One measure of the importance of this com- 
pression is in the observation that, once one moves 
away from the surface of the models, the distances d~ 
become less than 1.0917 r.u., this being the value 
between nearest-neighbor atoms calculated for the bulk 
LJ crystal (Lennard-Jones & Ingham, 1925). As the 
number of layers increases, so does the maximum 
distance d,. This increase is a function linear in N -1/3 
from the three-layer icosahedron and beyond (dotted 
line in Fig. 9), signifying that the compression in the 
surface layer varies inversely with the diameter of the 
surface layer. Lastly, we see that the distances between 
layers of the same index n decrease regularly as we 
increase the number of layers (continuous line in Fig. 
9). In effect, each new external layer introduces an 
additional radial compression which is transmitted 
throughout the model. The growth in compression upon 
each layer depends, to first order, on its effective 
surface, a fact which implies the regular decrease in d, 
observed. 
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3. T a n g e n t i a l  d i s t a n c e s  

In each layer the tangential distances d t between 
nearest-neighbor atoms were calculated in the neighbor- 
hood of the center of gravity of the faces. However, the 
configurations at the center of the faces are not strictly 
speaking identical, whatever the index n of the layer. 
When the center of gravity is occupied by an atom, d t is 
the distance which separates this atom from one of its 
six nearest neighbors; when there is no atom at the 
center of gravity, d t is the side of the triangle formed by 
the three central atoms. These distances are given in 
Fig. 10. We see that the distances d t decrease whether, 
in a layer of a given index n, a supplementary layer is 
added, or, in the different layers of a model made up of 
N atoms, one is going towards the center of the model. 
Just as for the distances d,, the distances d t decrease at 
the same time as the compression of the layers 
increases. 

In the surface layer (dotted line in Fig. 10) the 
distance d t varies very little with the number of layers of 
the model. We may also note that d t is slightly larger 
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~ 1.04 

.N 1.02 

~. 1.00 
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9-8  
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" '~  . . . . . . . .  2-1 
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4-3 o o 

3-2 ~ ~  

2-I 

1-O ~ 

N -  I;3._~ 
0.1 0.2 

i I 

28'69 9½3i 369 1,~7 5"5 
561 

- N 

0.3 0.4 
I i 

Fig. 9. Distances d, between atoms situated on a five-fold axis, at 
vertices belonging to layers n and n -  1 (n = 0 refers to the 
central atom). Results are given for seven relaxed icosahedra. The 
quantity N -1/3 varies inversely as the mean diameter of the 
models. 
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Fig. 10. Distances d t between nearest-neighbor atoms situated in 
the neighborhood of the center of gravity of faces belonging to 
successive layers n. 

than 1.125 r.u., the distance corresponding to the 
minimum LJ pair potential. This indicates that at the 
center of the faces which, as we have seen, are convex 
and where the interatomic distances are maximized, 
nearest-neighbor atoms are in a state of attraction. 

Finally, we may note, in Fig. 10, that the distance d t 

is distinctly smaller in the layer n = 1 than in the others, 
whatever the model. In this layer the faces comprise 
only three atoms and the distance d t is that which 
separates two vertices. In this case we have therefore 
directly that d t ~ 1.05 d 1, d I being the smallest radial 
distance d, as seen in Fig. 9. 

V. Discussion 

First of all, it seems clear from the preceding results 
that it is not necessary to make further calculations on 
larger Mackay icosahedra. In effect, we have seen in the 
relaxed configurations the regular compression for each 
layer as each further layer is added. With the potential 
used, there is nothing to prevent the building up of 
compression from layer to layer and one may predict 
the characteristics of models of more than nine layers 
without the necessity of long computer calculations, by 
extrapolating the diagrams, Figs. 9 and 10. 

On the other hand, we may note that the macro- 
scopic icosahedral model (§ II) gives a qualitative 
account of the results obtained with microscopic 
models, if one applies the special condition where each 
prismatic element is reduced to a flat section of type 
(111). In particular, the quantitative results strongly 
confirm the predicted compression as one approaches 
the center of a relaxed model: at the center of the 
nine-layer icosahedron, the radial interatomic distances 
are some 10% smaller than that in the bulk LJ crystal. 
This deformation is then much larger than the 1% 
normal displacement observed for the (111) surface of a 
relaxed LJ crystal (Allen & de Wette, 1969). There- 
fore, we may assert that the effects reported here 
originate in the icosahedral geometry and are not very 
sensitive to the pair potential used in the calculations. 

Furthermore, rare-gas clusters with pentagonal sym- 
metry are correctly described by the iqosahedral model 
presented here, as expected by using a LJ potential. 
This model, with normal compression and regular 
change in interatomic distances is completely different 
from that made of 20 tetrahedral units with rhombo- 
hedral structure, which is used to describe gold particles 
(Yang, 1979). Then it would suggest that in metallic 
particles, the distortions which correspond to the 5% 
tangential extension and make one crystalline structure 
(f.c.c.) turn into another one (rhombohedral) provoke a 
radial compression possibly smaller than in rare-gas 
particles and in any case experimentally not detected. 

Finally, whatever the number of atoms considered in 
the icosahedral model, the deformation caused by 
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relaxation is of appreciable importance to the point 
where one may expect a modification of certain 
physical quantities. It is thus indispensable to calculate 
such quantities, using relaxed model configurations 
rather than unrelaxed ones. 

The authors would like to thank Professor M. R. 
Hoare for valuable discussions. 
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Abstract 

New faster and more accurate procedures for the 
evaluation of two-phase seminvariants by means of the 
representation theory are described. Some special 
relationships are also considered and specific methods 
for their estimation are proposed. The use of the 
generalized first representation is discussed and detailed 
examples are given. These ideas for the evaluation of 
two-phase seminvariants have been introduced in the 
SIR program and examples of actual applications are 
given. 

1. Introduction* 

Two-phase s.s.'s are those linear combinations of two 
phases, 

q~ = ~0,, + ~0, (1) 

* Symbols and abbreviations are defined in the Appendix. 
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whose indices satisfy the condition h u + hv ----- 0 (mod 
tas) where h u and hv are the vectors seminvariantly 
associated with u and v, and t% is the seminvariant 
modulus of the given space group. 

The first representation (Giacovazzo, 1977) of a 
two-phase seminvariant of first rank is given by the set 
of quartet invariants of the form 

~v "J¢- ~uRp q- ~h2 R r - -  ~h 2 Rq, (2a) 

~V + (~tlRq "31- (/)hi Sp - -  (/)h I Rq, ( 2 b )  

where h I and h 2 are appropriate vectors which can vary 
over lines or planes of the reciprocal lattice; we will say 
that they belong to the sets {h I} and {h2}. The 
collection of diffraction magnitudes which are basis or 
cross terms of the quartets (2) constitutes the first 
phasing shell {B}I of ~. 

Two kinds of conditional probability distributions for 
q~, given all the magnitudes in {B}I, were obtained by 
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